图1 实验设备
Fig.1 Experimental equipment
图1 实验设备
Fig.1 Experimental equipment
表1 实验溶液代号与物理参数
Table 1 Experimental solution codes and physical parameters
溶液代号水∶丙二醇∶十二烷基硫酸钠密度/(kg·m-3)黏度/(mPa·s)表面张力/(N·m-1)N_33322∶10∶11 008.31.0920.044 93N_50211∶10∶11 012.51.1650.042 89N_100100∶10∶11 025.01.3230.040 85
表1 实验溶液代号与物理参数
Table 1 Experimental solution codes and physical parameters
溶液代号水∶丙二醇∶十二烷基硫酸钠密度/(kg·m-3)黏度/(mPa·s)表面张力/(N·m-1)N_33322∶10∶11 008.31.0920.044 93N_50211∶10∶11 012.51.1650.042 89N_100100∶10∶11 025.01.3230.040 85
表2 实验方案
Table 2 Experimental scheme
溶液代号颗粒直径气泡直径颗粒直径/气泡直径颗粒下落高度/mm(颗粒撞击速度/(m·s-1))mmmmN_33/50/1006340.176200(1.98)/400(2.8)N_33/50/1008340.235200(1.98)/400(2.8)N_33/50/10010340.294200(1.98)/400(2.8)
表2 实验方案
Table 2 Experimental scheme
溶液代号颗粒直径气泡直径颗粒直径/气泡直径颗粒下落高度/mm(颗粒撞击速度/(m·s-1))mmmmN_33/50/1006340.176200(1.98)/400(2.8)N_33/50/1008340.235200(1.98)/400(2.8)N_33/50/10010340.294200(1.98)/400(2.8)
图2 液膜收缩速度处理流程
Fig.2 Liquid film shrinkage speed processing flow
图2 液膜收缩速度处理流程
Fig.2 Liquid film shrinkage speed processing flow
图3 气泡破裂过程液膜孔洞扩张边缘取值
Fig.3 Values of the expansion edge of the liquid film hole during bubble bursting
图3 气泡破裂过程液膜孔洞扩张边缘取值
Fig.3 Values of the expansion edge of the liquid film hole during bubble bursting
图4 气泡排水阶段
Fig.4 Bubble drainage stage
图4 气泡排水阶段
Fig.4 Bubble drainage stage
图5 N_33溶液气泡破碎后边缘收缩速度随时间变化(图中代号每一部分分别代表溶液代号_颗粒下落高度(mm)_颗粒直径(mm))
Fig.5 Variation of edge retraction velocity with time after bubble bursting of N_33 solution
图5 N_33溶液气泡破碎后边缘收缩速度随时间变化(图中代号每一部分分别代表溶液代号_颗粒下落高度(mm)_颗粒直径(mm))
Fig.5 Variation of edge retraction velocity with time after bubble bursting of N_33 solution
图6 破碎与非破碎情况对比(a)—颗粒刚接触气泡表面气泡破裂; (b)—颗粒在接触气泡形成悬链面后气泡破裂; (c)—气泡不破碎.
Fig.6 Comparison of bursting and non?bursting situation
图6 破碎与非破碎情况对比(a)—颗粒刚接触气泡表面气泡破裂; (b)—颗粒在接触气泡形成悬链面后气泡破裂; (c)—气泡不破碎.
Fig.6 Comparison of bursting and non?bursting situation
图7 破碎概率随雷诺数与韦伯数变化
Fig.7 Variation of bursting probability with Reynolds number and Weber number
图7 破碎概率随雷诺数与韦伯数变化
Fig.7 Variation of bursting probability with Reynolds number and Weber number
图8 第1帧破碎速度与奥内佐格数关系
Fig.8 First frame bursting velocity versus Ornezog number
图8 第1帧破碎速度与奥内佐格数关系
Fig.8 First frame bursting velocity versus Ornezog number
图9 平均稳态液膜收缩速度(a)(b)—颗粒下落高度200 mm的实验数据与误差棒图; (c)(d)—颗粒下落高度400 mm的实验数据与误差棒图.
Fig.9 Average steady?state liquid film retraction velocity
图9 平均稳态液膜收缩速度(a)(b)—颗粒下落高度200 mm的实验数据与误差棒图; (c)(d)—颗粒下落高度400 mm的实验数据与误差棒图.
Fig.9 Average steady?state liquid film retraction velocity
图10 使用Taylor-Culick公式厚度计算(a)(b)—颗粒下落高度200 mm的实验数据与误差棒图; (c)(d)—颗粒下落高度400 mm的实验数据与误差棒图.
Fig.10 Thickness was calculated using the Taylor-Culick formula
图10 使用Taylor-Culick公式厚度计算(a)(b)—颗粒下落高度200 mm的实验数据与误差棒图; (c)(d)—颗粒下落高度400 mm的实验数据与误差棒图.
Fig.10 Thickness was calculated using the Taylor-Culick formula
图11 气泡破碎后随时间变化
Fig.11 Variation with time after bubble bursting
图11 气泡破碎后随时间变化
Fig.11 Variation with time after bubble bursting
图12 Oh与射流个数关系(a)—下降高度200 mm; (b)—下降高度400 mm.
Fig.12 Oh versus number of jets
图12 Oh与射流个数关系(a)—下降高度200 mm; (b)—下降高度400 mm.
Fig.12 Oh versus number of jets