颗粒击穿气泡时气泡的变形和破裂

图1 实验设备

Fig.1 Experimental equipment

图1 实验设备

Fig.1 Experimental equipment

表1 实验溶液代号与物理参数

Table 1 Experimental solution codes and physical parameters

溶液代号水∶丙二醇∶十二烷基硫酸钠密度/(kg·m-3)黏度/(mPa·s)表面张力/(N·m-1)N_33322∶10∶11 008.31.0920.044 93N_50211∶10∶11 012.51.1650.042 89N_100100∶10∶11 025.01.3230.040 85

表1 实验溶液代号与物理参数

Table 1 Experimental solution codes and physical parameters

溶液代号水∶丙二醇∶十二烷基硫酸钠密度/(kg·m-3)黏度/(mPa·s)表面张力/(N·m-1)N_33322∶10∶11 008.31.0920.044 93N_50211∶10∶11 012.51.1650.042 89N_100100∶10∶11 025.01.3230.040 85

表2 实验方案

Table 2 Experimental scheme

溶液代号颗粒直径气泡直径颗粒直径/气泡直径颗粒下落高度/mm(颗粒撞击速度/(m·s-1))mmmmN_33/50/1006340.176200(1.98)/400(2.8)N_33/50/1008340.235200(1.98)/400(2.8)N_33/50/10010340.294200(1.98)/400(2.8)

表2 实验方案

Table 2 Experimental scheme

溶液代号颗粒直径气泡直径颗粒直径/气泡直径颗粒下落高度/mm(颗粒撞击速度/(m·s-1))mmmmN_33/50/1006340.176200(1.98)/400(2.8)N_33/50/1008340.235200(1.98)/400(2.8)N_33/50/10010340.294200(1.98)/400(2.8)

图2 液膜收缩速度处理流程

Fig.2 Liquid film shrinkage speed processing flow

图2 液膜收缩速度处理流程

Fig.2 Liquid film shrinkage speed processing flow

图3 气泡破裂过程液膜孔洞扩张边缘取值

Fig.3 Values of the expansion edge of the liquid film hole during bubble bursting

图3 气泡破裂过程液膜孔洞扩张边缘取值

Fig.3 Values of the expansion edge of the liquid film hole during bubble bursting

图4 气泡排水阶段

Fig.4 Bubble drainage stage

图4 气泡排水阶段

Fig.4 Bubble drainage stage

图5 N_33溶液气泡破碎后边缘收缩速度随时间变化(图中代号每一部分分别代表溶液代号_颗粒下落高度(mm)_颗粒直径(mm))

Fig.5 Variation of edge retraction velocity with time after bubble bursting of N_33 solution

图5 N_33溶液气泡破碎后边缘收缩速度随时间变化(图中代号每一部分分别代表溶液代号_颗粒下落高度(mm)_颗粒直径(mm))

Fig.5 Variation of edge retraction velocity with time after bubble bursting of N_33 solution

图6 破碎与非破碎情况对比(a)—颗粒刚接触气泡表面气泡破裂; (b)—颗粒在接触气泡形成悬链面后气泡破裂; (c)—气泡不破碎.

Fig.6 Comparison of bursting and non?bursting situation

图6 破碎与非破碎情况对比(a)—颗粒刚接触气泡表面气泡破裂; (b)—颗粒在接触气泡形成悬链面后气泡破裂; (c)—气泡不破碎.

Fig.6 Comparison of bursting and non?bursting situation

图7 破碎概率随雷诺数与韦伯数变化

Fig.7 Variation of bursting probability with Reynolds number and Weber number

图7 破碎概率随雷诺数与韦伯数变化

Fig.7 Variation of bursting probability with Reynolds number and Weber number

图8 第1帧破碎速度与奥内佐格数关系

Fig.8 First frame bursting velocity versus Ornezog number

图8 第1帧破碎速度与奥内佐格数关系

Fig.8 First frame bursting velocity versus Ornezog number

图9 平均稳态液膜收缩速度(a)(b)—颗粒下落高度200 mm的实验数据与误差棒图; (c)(d)—颗粒下落高度400 mm的实验数据与误差棒图.

Fig.9 Average steady?state liquid film retraction velocity

图9 平均稳态液膜收缩速度(a)(b)—颗粒下落高度200 mm的实验数据与误差棒图; (c)(d)—颗粒下落高度400 mm的实验数据与误差棒图.

Fig.9 Average steady?state liquid film retraction velocity

图10 使用Taylor-Culick公式厚度计算(a)(b)—颗粒下落高度200 mm的实验数据与误差棒图; (c)(d)—颗粒下落高度400 mm的实验数据与误差棒图.

Fig.10 Thickness was calculated using the Taylor-Culick formula

图10 使用Taylor-Culick公式厚度计算(a)(b)—颗粒下落高度200 mm的实验数据与误差棒图; (c)(d)—颗粒下落高度400 mm的实验数据与误差棒图.

Fig.10 Thickness was calculated using the Taylor-Culick formula

图11 气泡破碎后随时间变化

Fig.11 Variation with time after bubble bursting

图11 气泡破碎后随时间变化

Fig.11 Variation with time after bubble bursting

图12 Oh与射流个数关系(a)—下降高度200 mm; (b)—下降高度400 mm.

Fig.12 Oh versus number of jets

图12 Oh与射流个数关系(a)—下降高度200 mm; (b)—下降高度400 mm.

Fig.12 Oh versus number of jets